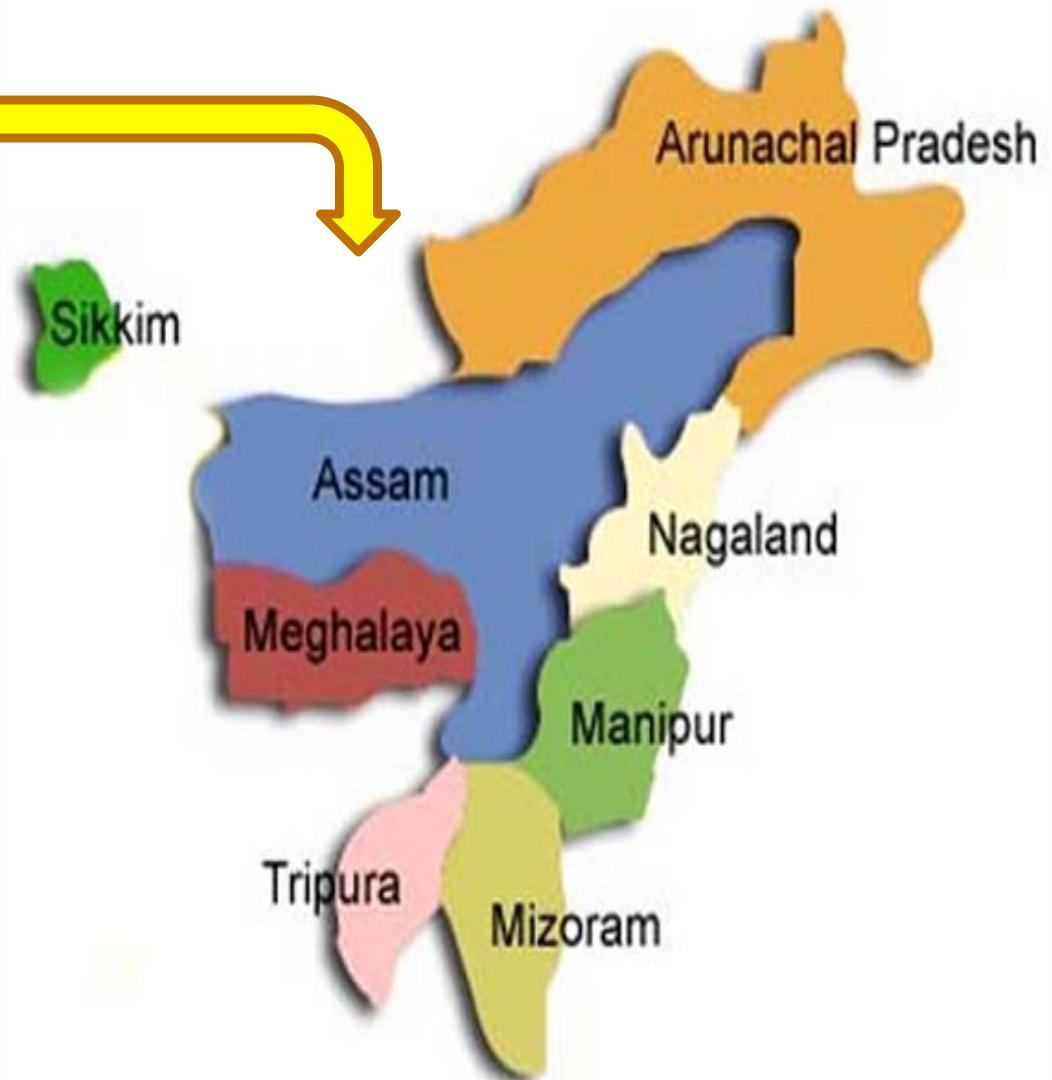


# **Traditional fermented bamboo shoot foods of North-East India and their characteristic natural microbial flora**

**Dr. Potshangbam Nongdam**  
**Department of**  
**Biotechnology**  
**Manipur University, India**

- The Bamboos are versatile multipurpose forest tree grasses.
- They are one of the most economically important plants in the world (Lewington, 1990).
- Bamboos are also highly popular as healthy food items.
- The consumption of fermented bamboo shoots in India is confined mostly to the North-Eastern states.
- Fermented bamboo shoot products constitute important diets of the locals.
- *Soibum, soidon, soijim, bastangapani, mesu, eup, ekung* etc. are popular fermented bamboo shoot foods of North-East India .
- The fermented bamboo shoot preparation is a tradition and needs to be safeguarded.


- There is a of displacing important traditional foods due to introduction of western foods (FAO, 1998).
- Host of microbes mainly lactic acid bacteria are involved in bamboo shoot fermentation.
- This results not only in enhancement of flavour, taste and aroma but also detoxification of anti-nutrients present in bamboo shoots.
- The present article highlights the different traditional methods of fermented bamboo shoot production in North-East India and their microbial populations contributing desirable functional and technological attributes.

## **Fermented bamboo shoot products of North-East India**

- The North-East India comprises of eight states viz., Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Arunachal Pradesh and Tripura.
- The region is home to different ethnic communities with diverse cultural and religious beliefs.
- The region covering an area of around 18.4 million hectares.
- It is considered as a treasure house of bamboos contributing more than 66% of bamboo species of India (Sarmah et al. 2000).
- Different fermented bamboo shoot products are assigned indigenous names based on ethnic communities consuming it, nature of products and their mode of preparation.



**Map of India**



**Map of North- East India**



**Different tribes of Manipur**

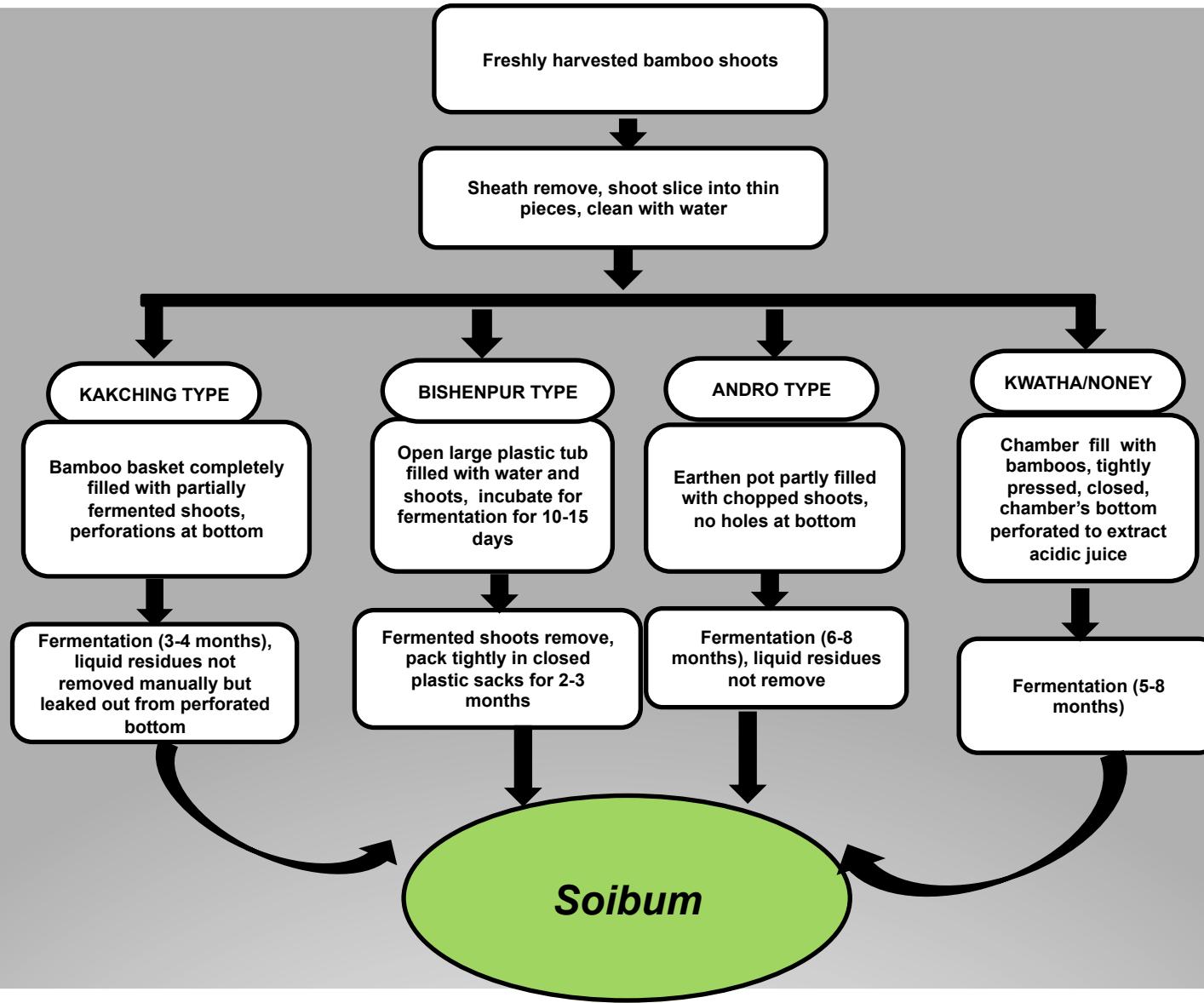
**Aao Tribe of Nagaland**



**Bodo of Assam**

**Tribes of Mizoram**

**Khasi of Meghalaya**




**Gorkha of Sikkim**

**Tribes of Arunachal Pradesh**

**Tribe of Tripura**

| Fermented bamboo shoot | Nature of product          | Uses                                                                                    | Community   | NE States of India |
|------------------------|----------------------------|-----------------------------------------------------------------------------------------|-------------|--------------------|
| <i>Mesu</i>            | Solid, acidic, sour taste  | Use as pickle                                                                           | Gorkha      | Sikkim             |
| <i>Soibum</i>          | Wet, solid, sour taste     | Use in the preparation of special local dish called Iromba or cooked with fish and meat | Meetei      | Manipur            |
| <i>Soidon</i>          | Wet, solid, sour taste     | Use in making of Iromba or consumed as vegetable with fish or meat                      | Meetei      | Manipur            |
| <i>Soijim</i>          | Liquid, acidic, sour taste | Use as condiment and flavouring agent                                                   | Meetei      | Manipur            |
| <i>Bastangapani</i>    | Liquid, acidic, sour taste | Use as condiment and flavouring agent                                                   | Nagas       | Nagaland           |
| <i>Ekhung</i>          | Solid, sour and acidic     | Use in the preparation of local dishes, curry or soups                                  | Adi tribe   | Arunachal Pradesh  |
| <i>Hirring</i>         | Solid, Sour, acidic taste  | Preparation of local dishes                                                             | Nishi tribe | Arunachal Pradesh  |
| <i>Eup</i>             | Solid, sour, acidic        | Preparation of ethnic dishes                                                            | Nishi       | Arunachal Pradesh  |
| <i>Tuaithar</i>        | Wet, solid and sour taste  | Use as pickle or in the making of traditional curry                                     | Baite, Hmar | Mizoram, Manipur   |
| <i>Lung-SieJ</i>       | Wet, sour , acidic         | Used in the preparation of traditional curry                                            | Khasi       | Meghalaya          |



**Figure: Production of different *soibum* varieties**



**Figure: Production of Kakching soibum**



**Figure: Production of Bishenpur *soibum***



**Figure: Earthen pot filled with bamboo shoots  
(*Andro soibum* preparation)**



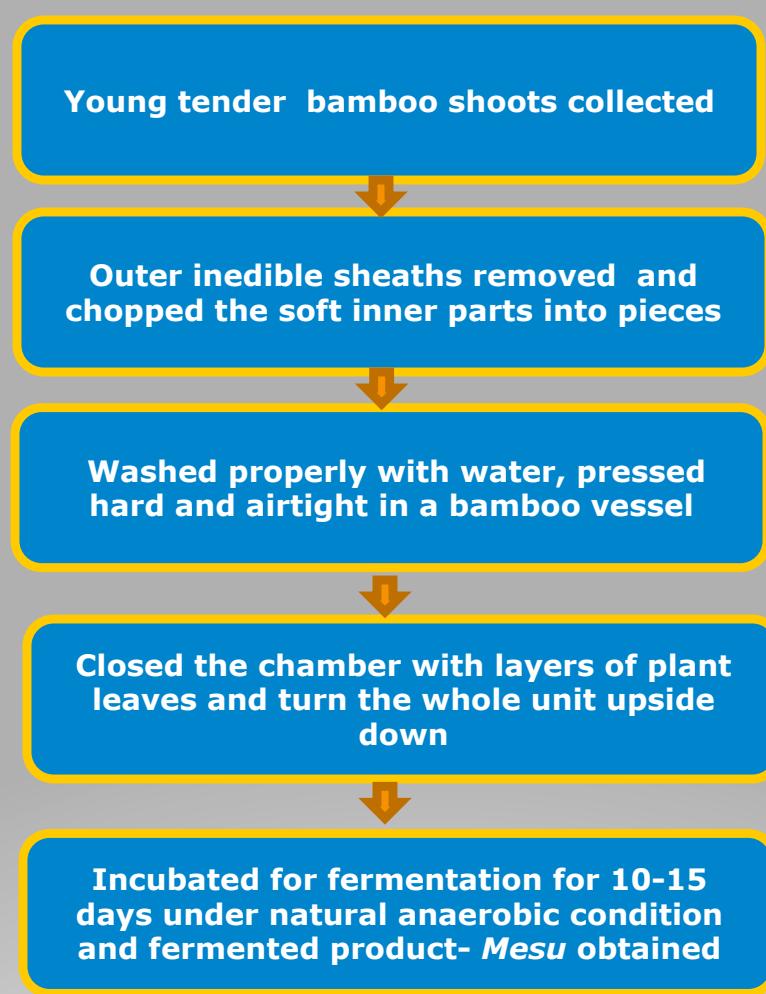
Soft apical stems  
apical stems

Young tender stems of *Teinostachyum wightii* and soft apical stems of *D. hamiltonii*, *D. giganteus* collected

Hard inedible sheaths removed and cleaned properly with water

Sliced stem pieces/ shoot tips submerged in container with water

Sour liquid obtained from the previous batch added , leaves of *Garcinia pedunculata* may be added


Container tightly closed and allowed to ferment for 9-10 days and fermented products- *Soidon* removed

Soidon prepared from apical stem of *D. hamiltonii* & *D. giganteus*



Naat based  
Soidon

Figure: Production of *Soidon*



**Figure: Production of Mesu**

Bamboo shoots collected, chopped after outer sheaths removed and washed with water



Pit dug and bamboo shoot filled bamboo basket placed inside it



Basket closed and pit covered with layers of leaves and soil, heavy objects put on it



Ferment for 2-3 months and basket open to collect the fermented product- *Ekhung*



*Ekhung*

Figure: Production of *Ekhung*

## Fermented bamboo liquid

- The sour acidic liquid called “*soijim*” produced during bamboo fermentation can be used as condiment.
- In Arunachal Pradesh, the juice drained from fermented bamboo shoots is called *eku* which is popularly used as flavouring agent.
- In Nagaland, the liquid portion can also be extracted from fermented shoots.
- This fermented bamboo liquid is locally called *banstangapani* and forms an indispensable part of daily cuisine of Nagas.
- Liquid portion collected is packed in plastic bottles and sold in local markets.



Fermented bamboo liquid

- The production of traditional fermented bamboo shoot products involves natural process of fermentation by lactic acid bacteria.
- LAB (Lactic Acid Bacteria) produce lactic acid as major end product through carbohydrate fermentation.
- It results in the development of flavor, aroma and characteristic sour taste of the fermented products.
- LAB present in fermented shoot product contribute different functional and technological attributes.
- Removal of anti-nutritive factor is important functional property of LAB.

- Phytic acid is an antinutritive factor present in fermented bamboo shoots.
- It forms an insoluble complex with calcium, zinc, iron and copper interfering their absorption.
- Phytic acid degradation by *L. brevis* was found to be highest in *soibum*.
- High phytase activity was also shown by *L.curvatus*, *L. xylosus* and *L plantarum* in *soidon*, *eup* and *hirring* (Sonar and Halami, 2014).

| Sample         | Isolates                 | Phytase activity (U <sup>-1</sup> ml) |
|----------------|--------------------------|---------------------------------------|
| <i>Soibum</i>  | <i>L. brevis</i>         | <b>19.33</b>                          |
|                | <i>L.plantarum</i>       | 14.78                                 |
|                | <i>Lactobacillus sp.</i> | 13.81                                 |
| <i>Soidon</i>  | <i>L.curvatus</i>        | 14.67                                 |
| <i>Eup</i>     | <i>L.xylosus</i>         | 13.42                                 |
| <i>Hirring</i> | <i>L.plantarum</i>       | 11.94                                 |

).

- The ability of LAB in lowering the pH of the substrate is important functional attributes .
- Tamang and Tamang (2009) found *L. plantarum* from *ekhung* having the low value of pH 3.9.
- Sonar and Halami (2014) also identified strains of *L. plantarum* isolated from *Soibum*, *hecche* and *hirring* producing highest acidification (less than 4 pH values).
- The production of lactic acid by LAB inhabiting the fermented food reduces the pH to such level that the pathogenic bacteria if present in the food are either inhibited or killed (Halzapfel et al.1995).

| Sample         | Isolates               | Acidification |
|----------------|------------------------|---------------|
| <i>Ekhung</i>  | <i>L.plantarum</i>     | <b>3.90</b>   |
| <i>Soibum</i>  | <i>L. brevis</i>       | 4.70          |
|                | <i>L.plantarum</i>     | <b>3.90</b>   |
|                | <i>L. fermentum.</i>   | 4.38          |
| <i>Hecche</i>  | <i>Leuconostoc sp.</i> | 4.87          |
|                | <i>L.plantarum</i>     | <b>3.75</b>   |
| <i>Hirring</i> | <i>L.plantarum</i>     | <b>3.98</b>   |

- High hydrophobicity is the indication that the bacterial culture is able to adhere into the epithelial cell layer of digestive tract for efficient colonization (Holzapfel et al. 2002).
- LAB isolated from *soibum* such as *L.plantarum* and *L.brevis* exhibited high degree of hydrophobicity ..

| Sample         | Isolates                         | % Hydrophobicity |
|----------------|----------------------------------|------------------|
| <i>Soibum</i>  | <i>L. brevis</i>                 | 70.47            |
|                | <i>L.plantarum</i>               | 93.48            |
|                | <i>L. fermentum.</i>             | 59.81            |
| <i>Soidon</i>  | <i>L. curvatus</i><br><i>sp.</i> | 40.58            |
| <i>Hirring</i> | <i>L.plantarum</i>               | 55.91            |
|                | <i>L. lactis</i>                 | 59.50            |
| <i>Ekhung</i>  | <i>T. halophilus</i>             | 67.70            |

**Table: Microbial content of some popular traditional fermented bamboo shoot products**

| Fermented shoot product          | Microorganism present                                                                                                                                               | Country      | References                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|
| <b>Mesu</b>                      | <i>Lactobacillus plantarum</i> , <i>Enterococcus faecium</i> , <i>Lactococcus lactis</i>                                                                            | India, Nepal | Tamang and Sarkar, 1994; Das and Deka, 2012                      |
| <b>Soibum</b>                    | <i>Lactobacillus brevis</i> , <i>L. plantarum</i> , <i>Leuconostoc mesenteroides</i> , <i>L. fallax</i>                                                             | India        | Sonar and Halami, 2014; Das and Deka, 2012; Tamang et al., 2008  |
| <b>Soidon</b>                    | <i>Lactobacillus brevis</i> , <i>L. lactis</i> , <i>L. curvatus</i> , <i>Leuconostoc fallax</i>                                                                     |              | Sonar and Halami, 2014; Das and Deka, 2012; Tamang et al., 2008  |
| <b>Soijim</b>                    | <i>Lactobacillus brevis</i> , <i>Leuconostoc lactis</i> , <i>L. fallax</i> , <i>L. mesenteroides</i>                                                                | India        | Tamang et al., 2008                                              |
| <b>Ekung</b>                     | <i>Lactobacillus plantarum</i> , <i>L. brevis</i> , <i>L. casei</i> , <i>L. fermentum</i> , <i>Tetragenococcus halophiles</i>                                       | India        | Das and Deka, 2012; Tamang and Tamang., 2009                     |
| <b>Heccha</b>                    | <i>Lactobacillus plantarum</i> , <i>Leuconostoc sp.</i>                                                                                                             | India        | Sonar and Halami, 2014                                           |
| <b>Eup</b>                       | <i>Lactobacillus brevis</i> , <i>L. plantarum</i> , <i>L. xylosus</i> , <i>L. casei</i> , <i>L. fermentum</i> , <i>Leuconostoc mesenteroides</i> , <i>L. fallax</i> | India        | Sonar and Halami, 2014; Tamang et al., 2012; Tamang et al., 2008 |
| <b>Hirring</b>                   | <i>Lactobacillus brevis</i> , <i>L. plantarum</i> , <i>L. curvatus</i> , <i>L. lactis</i>                                                                           | India        | Sonar and Halami, 2014; Das and Deka, 2012; Tamang et al., 2008  |
| <b>Lung-seij</b>                 | <i>Lactobacillus brevis</i> , <i>L. curvatus</i> , <i>Leuconostoc mesenteroides</i> , <i>L. fallax</i> , <i>L. lactis</i> , <i>L. citreus</i>                       | India        | Tamang et al., 2008                                              |
| <b>Tuaithur</b>                  | <i>Lactobacillus brevis</i> , <i>L. curvatus</i> , <i>L. plantarum</i> , <i>Bacillus circulans</i> , <i>B. firmus</i> , <i>B. sphaericus</i> , <i>B. subtilis</i>   | India        | Tamang et al., 2012                                              |
| <b>Soidonmahi</b>                | <i>Bacillus subtilis</i> , <i>B. cereus</i> , <i>B. pumilus</i> , <i>Lactobacillus brevis</i> , <i>L. plantarum</i> , <i>Enterococcus faecium</i>                   | India        | Jeyram et al., 2010                                              |
| <b>Tabah bamboo shoot pickle</b> | <i>Lactobacillus plantarum</i> , <i>L. brevis</i>                                                                                                                   | Indonesia    | Darmayanti et al., 2014                                          |
| <b>Naw-maidong</b>               | <i>Lactobacillus buchneri</i> , <i>L. plantarum</i> , <i>L. brevis</i> , <i>L. fermentum</i>                                                                        | Thailand     | Tanasupawat and Komagata, 1995                                   |
| <b>Jiang-sun</b>                 | <i>Lactobacillus plantarum</i> , <i>Lactococcus lactis</i> , <i>Enterococcus faecium</i>                                                                            | Taiwan       | Chen et al., 2010                                                |

## CONCLUSION

- The production of fermented bamboo foods is generally traditional and meant largely for local markets.
- Improvement of fermented bamboo shoot production can be achieved by employing modern scientific techniques.
- Extensive investigation on microbial biodiversity is required to understand the safety aspect of the food.
- Improvisation of fermented shoot production with scientific inputs combined with detailed studies on microbial biodiversity for their characteristic functional and technological properties will help in accelerating the production of safe fermented bamboo shoots in larger scale.

# Thank You