

Biomass production and carbon sequestration potential of various Bamboo species in the Mid Himalayan region of India

Anjuli Agarwal* & J P Purwar
GBPUA&T Agricultural Research Station, Majhera
Garampani (Nainital) 263 135 Uttarakhand, India

*E-mail: anjulit@rediffmail.com

BACKGROUND

Bamboo is a versatile non-timber plant and produces substantial biomass.

There are about 100 genera and 1000 species of sympodial and monopodial bamboos, distributed throughout the tropics, subtropics and temperate zones of the world.

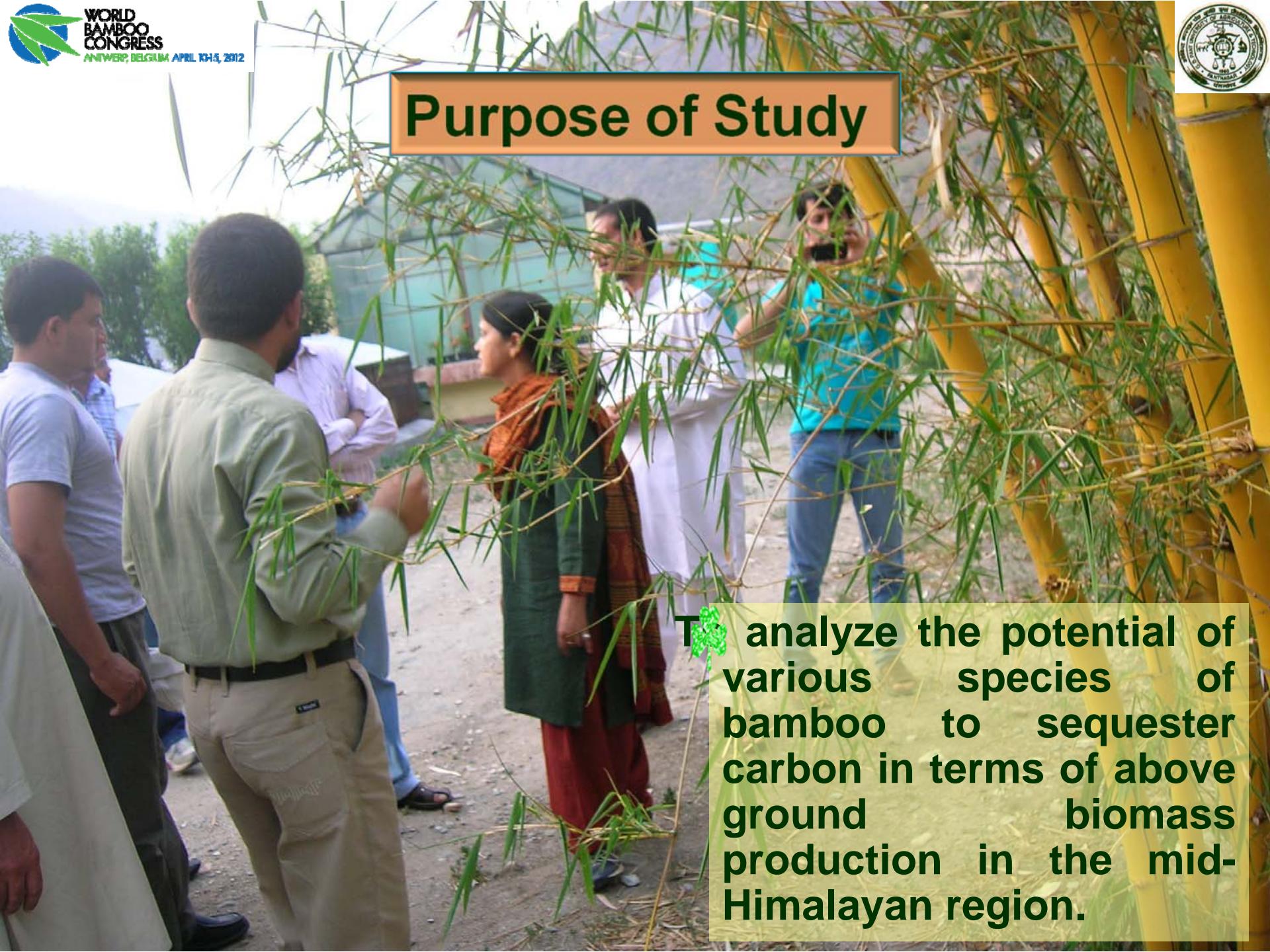
Among the 130 wild and cultivated bamboo species occurring in India (Sharma 1987), some are distributed throughout the Himalayas, with a variety of different genera adapted to different ecological zones.

In the Siwalik hill region which is hot and dry, a limited range of species occurs, such as *D. strictus* & *B. bambos*.

At higher altitudes, bamboos in the genera *Arundinaria*, *Thamnocalamus* & *Himalayacalamus* are common.

In India and abroad, many studies on net production and carbon cycling in various bamboos have been conducted but very few in the Himalayan region.

In the central Himalayan region a study was conducted on *Thamnocalamus spathiflorus* (Saxena et al. 2001) and in the mid-Himalayan region on *D. asper* (Agarwal & Purwar 2009).



The Himalayas are extremely vulnerable to climate change, hence 'Sustaining the Himalayan Ecosystem' is one of the missions under the National Action Plan on Climate Change

Purpose of Study

To analyze the potential of various species of bamboo to sequester carbon in terms of above ground biomass production in the mid-Himalayan region.

Duration of study : 2006 -2011
Altitude : 905 m (a.s.l.),
Latitude : 29°30.137'
Longitude : 79° 28.784'

Place of Study

★ Annual average maxi. & mini. temperature : 27.8°C & 14.8°C
Mean annual rainfall : 598 mm

Bamboo Species

Dendrocalamus strictus

Bambusa vulgaris

Bambusa multiplex

B. bambos

Phyllostachys nigra

S

Sympodial

Monopodial

Sampling

★ July, 2011

★ Five culms of various diameters and heights

Parameters recorded

 Total length, girth of culms at 1.0 m and 1.5 m, fresh and dry wt with branch and leaves of harvested culms

★Culms were harvested and FW with branch & leaves was recorded.

★ DW estimation was done by shade drying until a constant weight achieved.

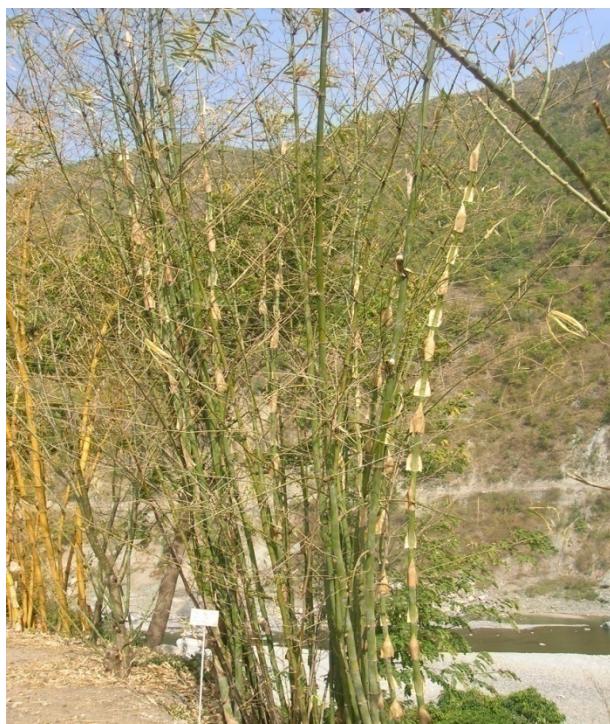
Statistical Analysis

- On the basis of FW & DW, linear regression equations were developed for the estimation of above ground biomass (Singh et al. 2009).
- Biomass accumulation per clump was extrapolated to per ha basis by multiplying with (KAU 2002).

Species	No. of Plants ha ⁻¹	Spacing
<i>D. strictus, B. vulgaris</i>	400	5 x 5 m
<i>B. multiplex</i>	900	3 x 3 m
<i>B. bambos</i>	100	10 x 10 m
<i>P. nigra</i>	Culms per square meter	-

Carbon content estimation

- 50 % of the total above ground biomass (Scurlock et al. 2000).


Regression Equation

Fresh wt	$Y=(5.31)+(-1.79)b_1+(-607.73)b_2+(764.36)b_3$	$R^2=0.96$
	$S.E_1=2.47, S.E_2=935.44 S.E_3=972.64$	
Dry wt	$Y=(5.99)+(-1.77)b_1+(-584.09)b_2+(712.13)b_3$	$R^2=0.96$
	$S.E_1=1.82, S.E_2=689.10 S.E_3=716.50$	

Y =Above ground biomass (y kg culm⁻¹), b_1 = height (m), b_2 =Girth to ht at 1m, b_3 = Girth to ht at 1.5 m

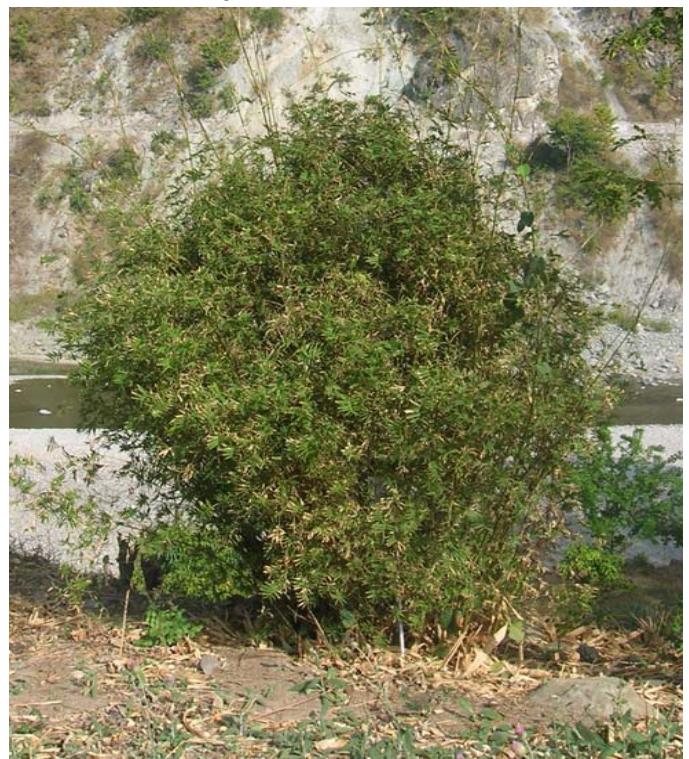
*Dendrocalamus
strictus*

Regression Equation

Fresh Wt	$Y = (-4.82) + (3.52)b_1 + (56.66)b_2 + (-155.46)b_3$	$R^2 = 0.99$
	$S.E._1 = 0.28, S.E._2 = 24.16 S.E._3 = 30.00$	
Dry Wt	$Y = (-2.85) + (2.20)b_1 + (19.43)b_2 + (-79.86)b_3$	$R^2 = 0.99$
	$S.E._1 = 0.67, S.E._2 = 58.44 S.E._3 = 72.56$	

Y =Above ground biomass (y kg culm $^{-1}$), b_1 = height (m), b_2 =Girth to ht at 1m, b_3 = Girth to ht at 1.5 m

*Bambusa
vulgaris*


Regression Equation

Fresh Wt	$Y = (-0.16) + (0.07)b_1 + (4.41)b_2 + (-2.54)b_3$	$R^2 = 1.00$
	$S.E._1 = 15.75, S.E._2 = 210.06 S.E._3 = 1785.04$	
Dry Wt	$Y = (0.055) + (-0.035)b_1 + (-0.20)b_2 + (3.27)b_3$	$R^2 = 0.99$
	$S.E._1 = 1.29, S.E._2 = 17.17 S.E._3 = 145.91$	

Y =Above ground biomass (y kg culm⁻¹), b_1 = height (m), b_2 =Girth to ht at 1m, b_3 = Girth to ht at 1.5 m

*Bambusa
multiplex*

Regression Equation

Fresh Wt	$Y = (2.95) + (0.63)b_1 + (-210.01)b_2 + (265.86)b_3$	$R^2 = 0.93$
	$S.E._1 = 2.69, S.E._2 = 214.75 S.E._3 = 245.24$	
Dry Wt	$Y = (5.17) + (-0.14)b_1 + (-323.78)b_2 + (363.98)b_3$	$R^2 = 0.97$
	$S.E._1 = 1.32, S.E._2 = 105.59 S.E._3 = 120.58$	

Y =Above ground biomass (y kg culm⁻¹), b_1 = height (m), b_2 =Girth to ht at 1m, b_3 = Girth to ht at 1.5 m

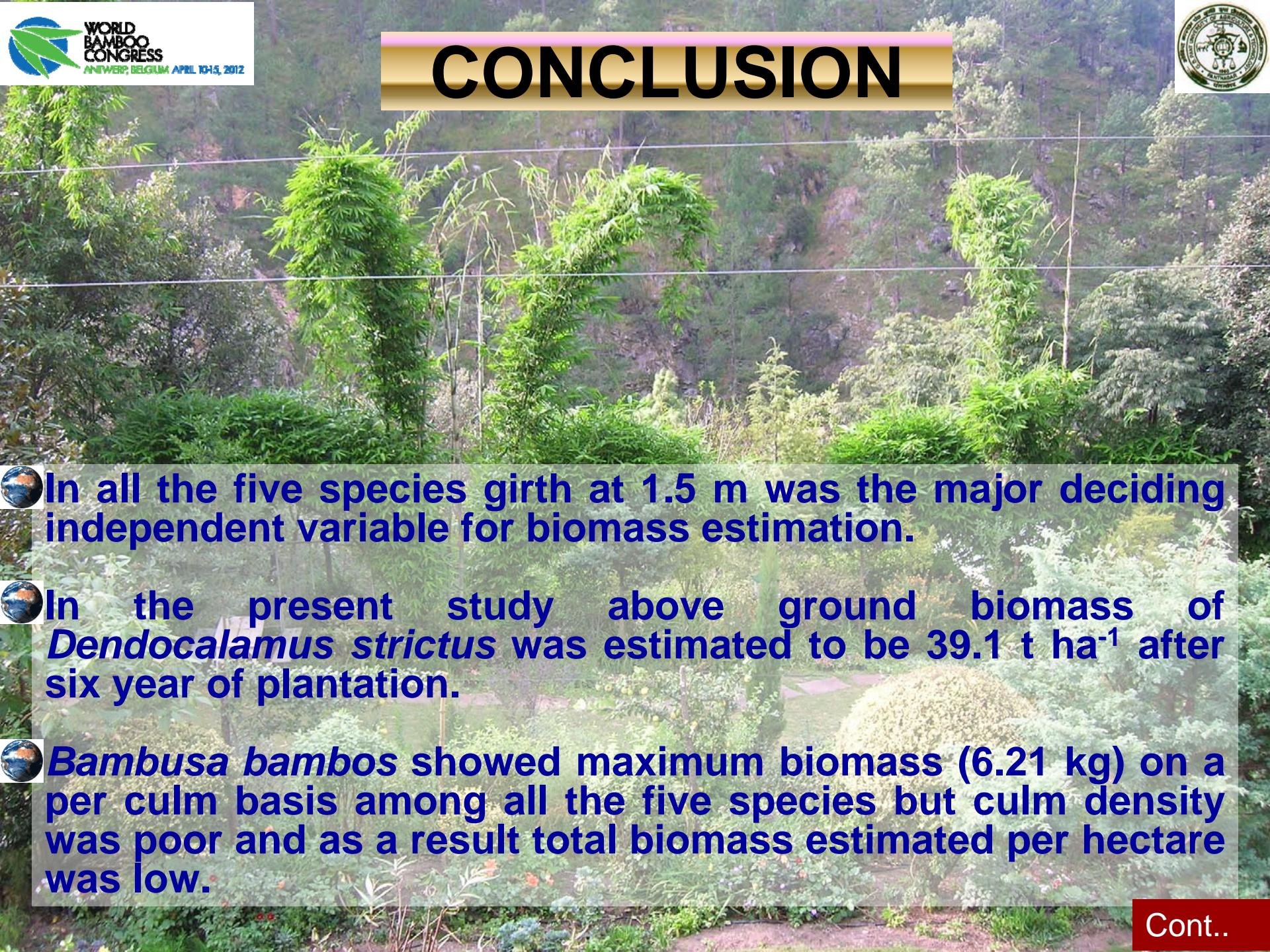
*Bambusa
bambos*

Regression Equation

Fresh Wt	$Y = (-1.23) + (0.93)b_1 + (-20.70)b_2 + (13.29)b_3$	$R^2 = 0.98$
	$S.E._1 = 0.54, S.E._2 = 17.95 S.E._3 = 11.45$	
Dry Wt	$Y = (-1.34) + (0.88)b_1 + (12.20)b_2 + (-22.44)b_3$	$R^2 = 0.93$
	$S.E._1 = 0.68, S.E._2 = 22.45 S.E._3 = 14.33$	

Y =Above ground biomass (y kg culm⁻¹), b_1 = height (m), b_2 =Girth to ht at 1m, b_3 = Girth to ht at 1.5 m

*Phyllostachys
nigra*



Carbon sequestration on the basis of estimated above-ground biomass

bamboo species	Biomass		No. of culms per clump	Biomass		No. of plants ha ⁻¹	Biomass (t ha ⁻¹)		Carbon sequestered (t ha ⁻¹)			
	Kg culm ⁻¹			Kg clump ⁻¹			FW					
	FW	DW		FW	DW		FW	DW				
<i>D. strictus</i>	6.05	2.22	44	266.2	97.6	400	106.5	39.1	19.5			
<i>B. vulgaris</i>	2.53	1.62	16	40.4	26.0	400	16.2	10.4	5.2			
<i>B. multiplex</i>	0.05	0.02	261	14.0	5.3	900	12.6	4.7	2.4			
<i>B. bambos</i>	6.21	4.31	07	43.5	30.1	100	4.4	3.0	1.5			
<i>P. nigra</i>	0.41	0.39	23*	54.4	51.9	2,30,000	94.1	89.8	44.9			

*Number of culms per sq mt

CONCLUSION

- In all the five species girth at 1.5 m was the major deciding independent variable for biomass estimation.
- In the present study above ground biomass of *Dendocalamus strictus* was estimated to be 39.1 t ha^{-1} after six year of plantation.
- *Bambusa bambos* showed maximum biomass (6.21 kg) on a per culm basis among all the five species but culm density was poor and as a result total biomass estimated per hectare was low.

Monopodial species (*Phyllostachys nigra*) has more potential to sequester carbon due to high density of culms and high per cent dry matter in the Himalayan region.

ACKNOWLEDGEMENT

Department of Science and Technology, Govt of India, New Delhi for financial assistance under National programme on Carbon Sequestration Research

सहमत्वान्वानुत्तापितवांसकरण
प्रजाति-डैन्ड्रोक्लेमस एस-एर
रोपण तिथि- 21-08-09
वित्त पाणित: विज्ञान एवं प्रौद्योगिकी विभाग (DST,
NEW DELHI)

Thank You