

INCIDENCE, INTENSITY OF ATTACK AND CONTROL OF THE BAMBOO BORER, *Phloeobius crassicollis* Jord.

**Dr. K.P. Singh
Scientist**

**Forest Research Institute
Dehradun, India**

Indian Council of Forestry Research and Education
(Ministry of Environment, Forest and Climate Change, GoI)

(email: singhkp@icfre.org, Web: www.icfre.org)

INDIAN COUNCIL OF FORESTRY RESEARCH & EDUCATION

HFRI, Shimla

AFRI, Jodhpur

TFRI, Jabalpur

IWST, Bangalore

INDIA
States and Union Territories

RFRI, Jorhat

FRI, Dehradun

IFP, Ranchi

IEGTB, Coimbatore

Map not to Scale

DISTRIBUTION OF BAMBOO

GLOBAL SCENARIO

- Genera-75
- Species- 1250
- Tropical, Sub-Tropical and Temperate Zone
Africa, Asia, Central and South America

INDIAN SCENARIO

- Genera-23
- Species- 125
- North-Eastern India alone reports about 66% of growing stock

Family
Poaceae

Sub-family
Bambusoideae

FEW IMPORTANT FACTS

- An arborescent plant of Global Interest
- Its known as '**GREEN GOLD**' for its fast growth rate
- The name originated from Malay word '**MAMBU**'
- Bamboos occur naturally in four of the five continents, except Europe
- The Global consumption has been calculated to approx. 2 million tonne
- China is the maximum producer to the tune of about 1.3 million tonne
- There are about 1500 documented traditional uses of bamboos

IMPORTANT USES

- Housing and agricultural implements
- Pulp and paper, domestic commodities and in cottage industries
- Vegetable and pickles
- Employment in small cottage industries

■ It is estimated that about 2.5 billion people depend on use of bamboo

■ Estimated value of US\$ 7 billion per annum

BAMBOOS : THE WONDERFUL GIFT OF NATURE

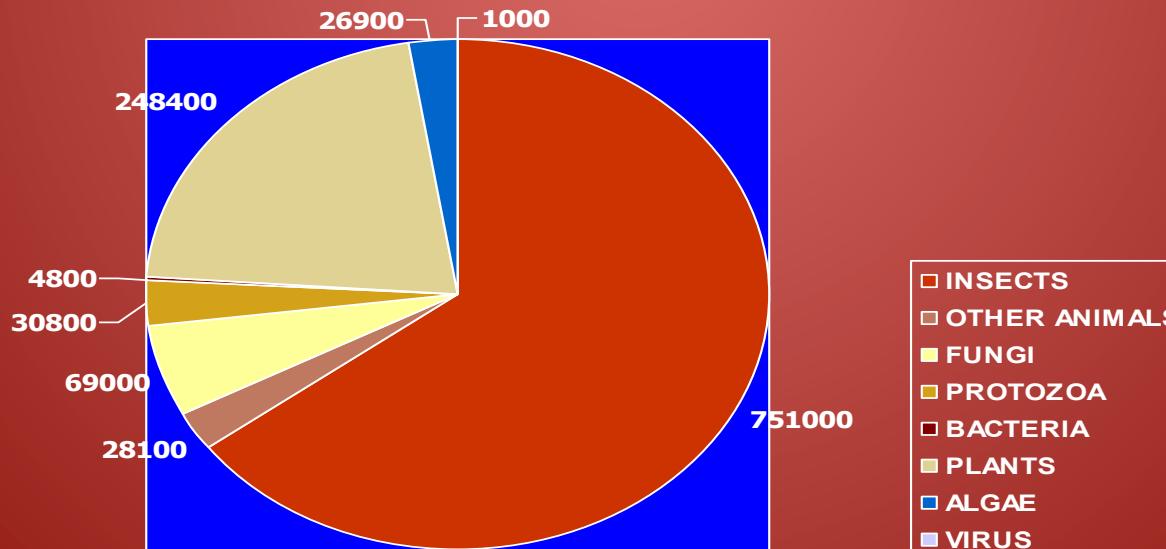
Bamboo Handicraft

Bamboo Hut

Bamboo Bridge

Activated Charcoal

Bamboo Furniture



Conc. vinegar used as insecticide

THE INSECT

- The most dominating group occupying highest position in the whole animal kingdom
- Insects play decisive role in forest productivity, resources and products
- Affect growth increment, even lead to death of the tree as well as its products

No. OF ORGANISMS ON EARTH 1413000 (APPROX.)

LOSSES CAUSED BY FOREST INSECTS

Forest Crop	Per cent damage	Insect pest responsible	Estimated loss (INR in million per unit area / vol.)	Authority
Nurseries	93.5	White grubs	0.45 per ha	Vaishampayan & Bhandari, 1981
Forests and Plantations				
Eucalyptus	05.0	Stem borer and termites	0.0024 per ha	Forest Research Institute, India (Unpublished)
Teak	13-65	Teak defoliators	0.05 per ha	Champion, 1934
Timber				
Industrial wood	10.0	Wood borers and termites	332.27 for 7.97 millions m ³	Purushotham, 1970
Bamboo	25-40	Ghoon borers	2.81 for 0.15 million koris (20 no.)	Beeson, 1941 as well as present records of FRI, India

INSECT PESTS OF BAMBOOS

(Insect species in Indian Sub-Continent - 212)

■ **Nursery pest** - 05

■ **Defoliators** - 48

■ **Termites** - 13

■ **Sapsuckers** - 90

■ **Borers** - 56

■ **Borers on felled / dried bamboo-** 44

■ **Culm and shoot borers** - 12

BORERS ON FELLED /DRY BAMBOOS

- ◆ *Dinoderus ocellaris*
- ◆ *Dinoderus minutus*
- ◆ *Dinoderus brevis*
- ◆ *Lyctus africanus*
- ◆ *Chlorophorus annularis*
- ◆ *Stromatium barbatum*

Coleoptera: Bostrichidae

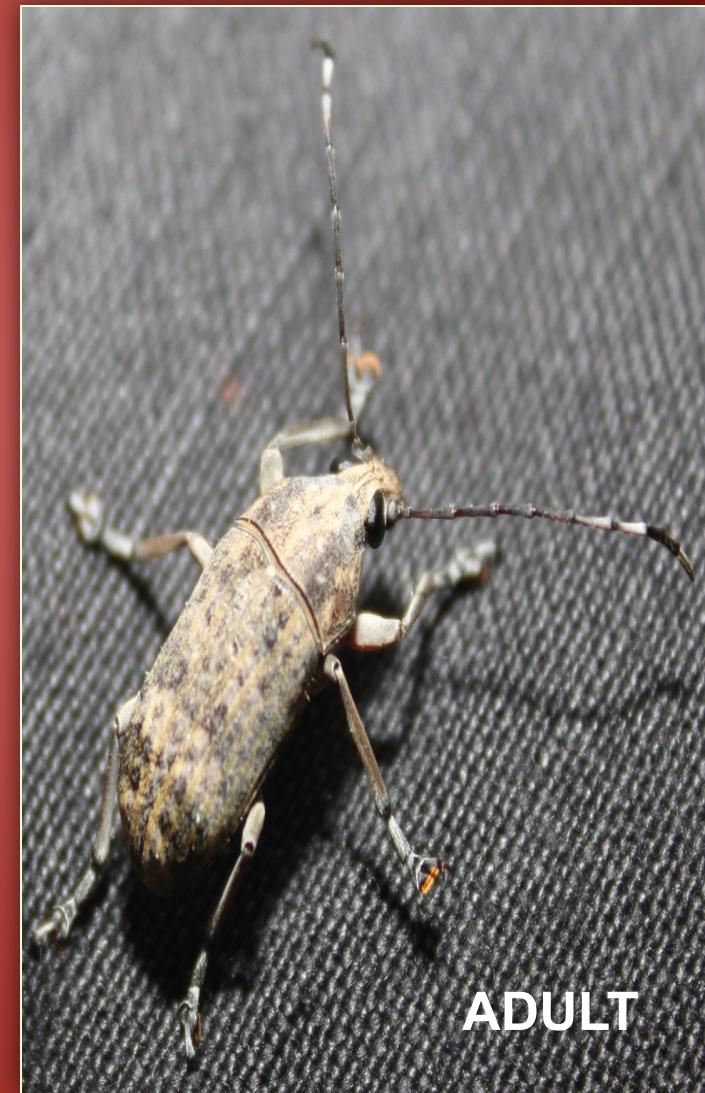
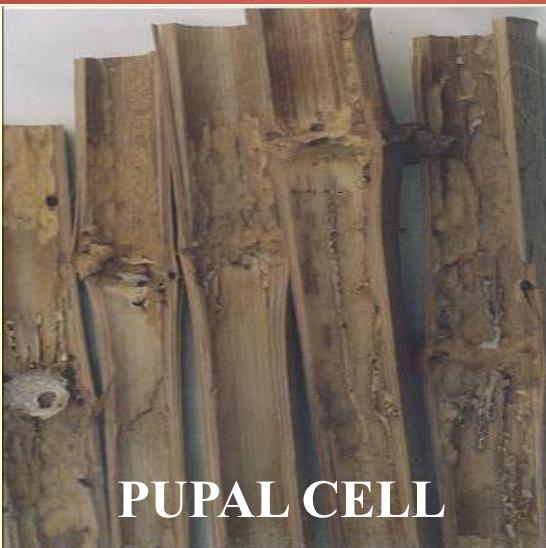
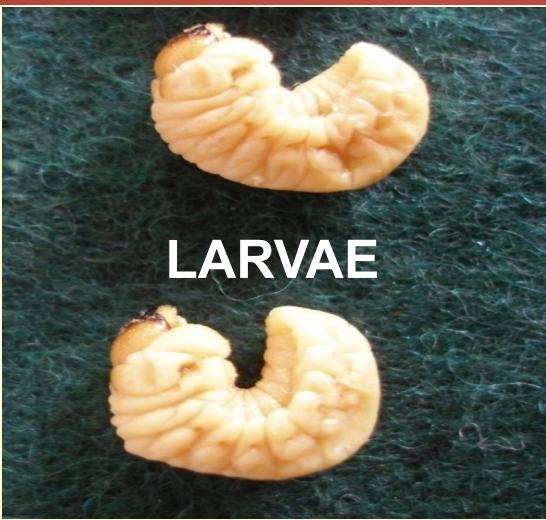
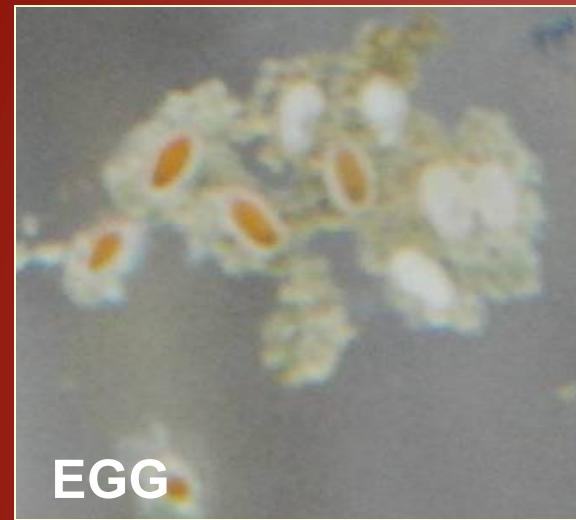
Coleoptera: Lyctidae

Coleoptera: Cerambycidae

SHOOT AND CULM BORERS OF BAMBOOS

❖ ***Cyrtotrachelus dux***
(Coleoptera: Curculionidae)

❖ ***Estigmena chinensis***
(Coleoptera: Chrysomelidae)

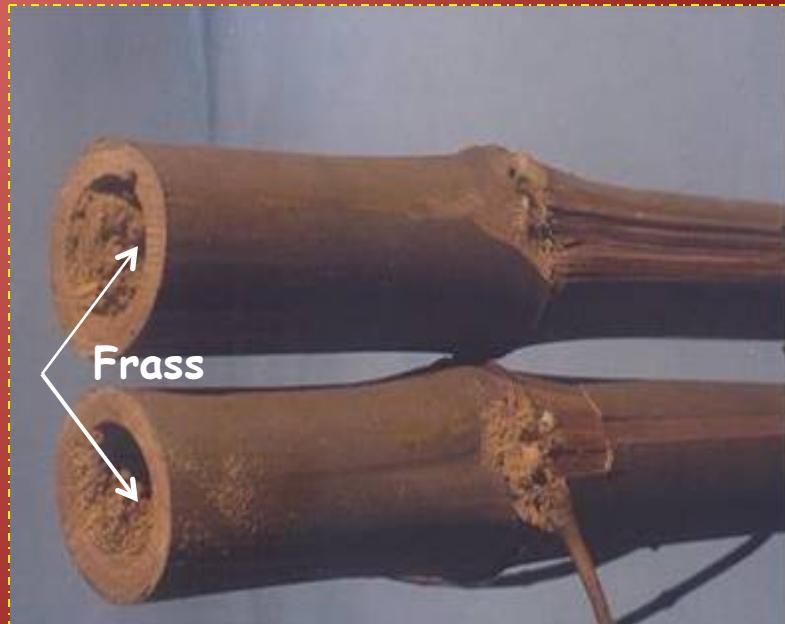
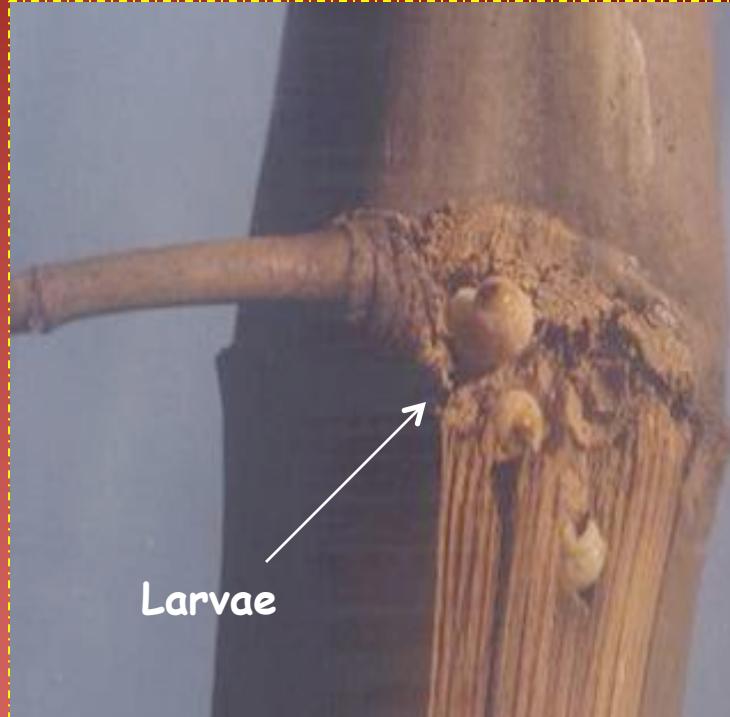





❖ ***Phloeobius crassicollis***
(Coleoptera: Anthribidae)

BAMBOO BORER

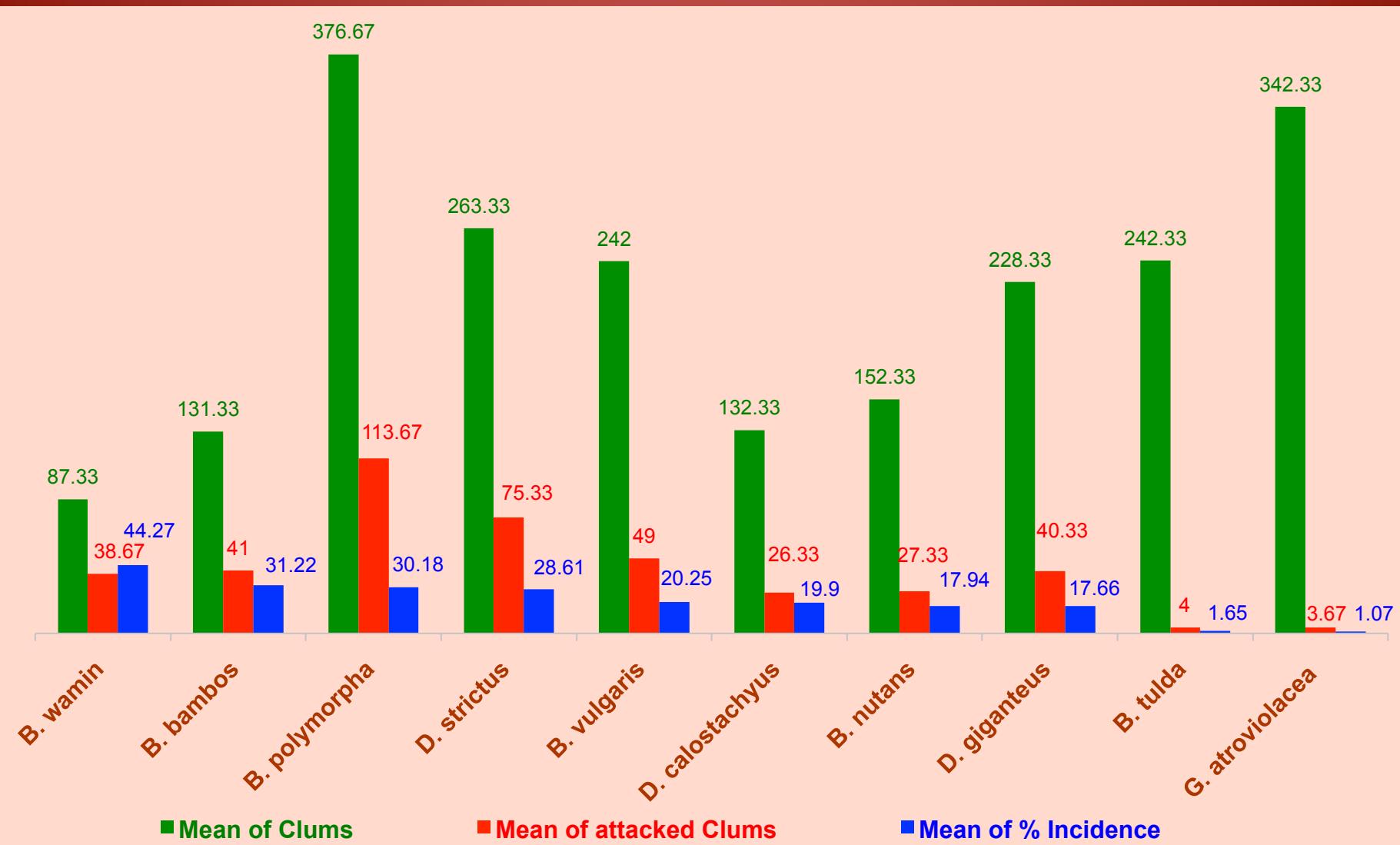
Phloeobius crassicollis
(Coleoptera- Anthribidae)

Phloeobius crassicollis



- Emergence of beetle in May-June
- Eggs laid at nodes/culm sheaths
- Larval period is more than 300 days

- First record on green standing bamboo species.
- Earlier reported only on felled bamboo (*Dendrocalamus strictus*)

FEEDING PATTERN (LARVA)


- Freshly hatched larvae nibble and scratch at the point of hatching on the nodes/culms sheaths
- At later stage, larvae feed on woody tissues of nodes and internodes to deposit larval frass inside hollow internodes

INCIDENCE AND INTENSITY OF ATTACK

Bamboo species	Mean No. of culms	Incidence of attack (Mean)		Mean No. of holes	Intensity / Category of attack
		No. of attacked culms	% of incidence		
<i>Bambusa wamin</i>	087.33	38.67	44.27±1.15	124.00	High
<i>Bambusa bambos</i>	131.33	41.00	31.22±0.46	91.33	High
<i>Bambusa polymorpha</i>	376.67	113.67	30.18±1.63	254.00	High
<i>Dendrocalamus strictus</i>	263.33	75.33	28.61±2.59	178.00	High
<i>Bambusa vulgaris</i>	242.00	49.00	20.25±0.97	65.67	Moderate
<i>Dendrocalamus calostachyus</i>	132.33	26.33	19.90±1.90	34.67	Moderate
<i>Bambusa nutans</i>	152.33	27.33	17.94±0.22	38.33	Moderate
<i>Dendrocalamus giganteus</i>	228.33	40.33	17.66±0.49	75.00	Moderate
<i>Bambusa tulda</i>	242.33	4.00	01.65±0.41	2.33	Low
<i>Gigantochloa atroviolacea</i>	342.33	3.67	01.07±0.11	1.67	Low

INCIDENCE OF ATTACK

1. *Bambusa bambos*
2. *Bambusa nutans*
3. *Bambusa polymorpha*
4. *Bambusa tulda*
5. *Bambusa vulgaris*
6. *Bambusa wamin*
7. *Dendrocalamus calostachyus*
8. *Dendrocalamus giganteus*
9. *Dendrocalamus strictus*
10. *Gigantochloa atroviolacea*

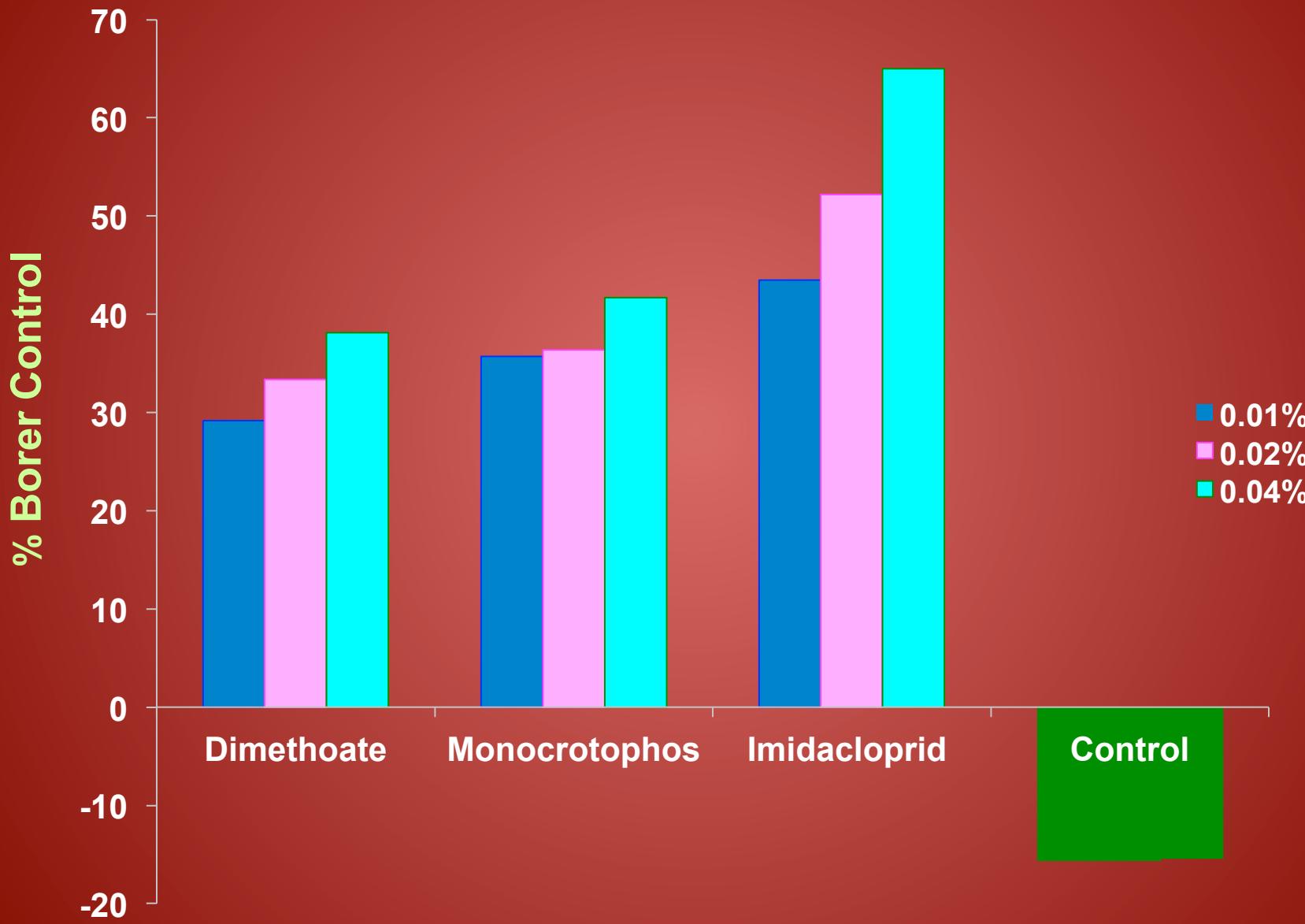
Chemical Control

INSECTICIDES USED

Contact insecticides (4) : Cypermethrin, Deltamethrin, Endosulphan and Chlorpyriphos

Systemic insecticides (3) : Monocrotophos, Dimethoate and Imidachloprid

Method used : Internodal injection method

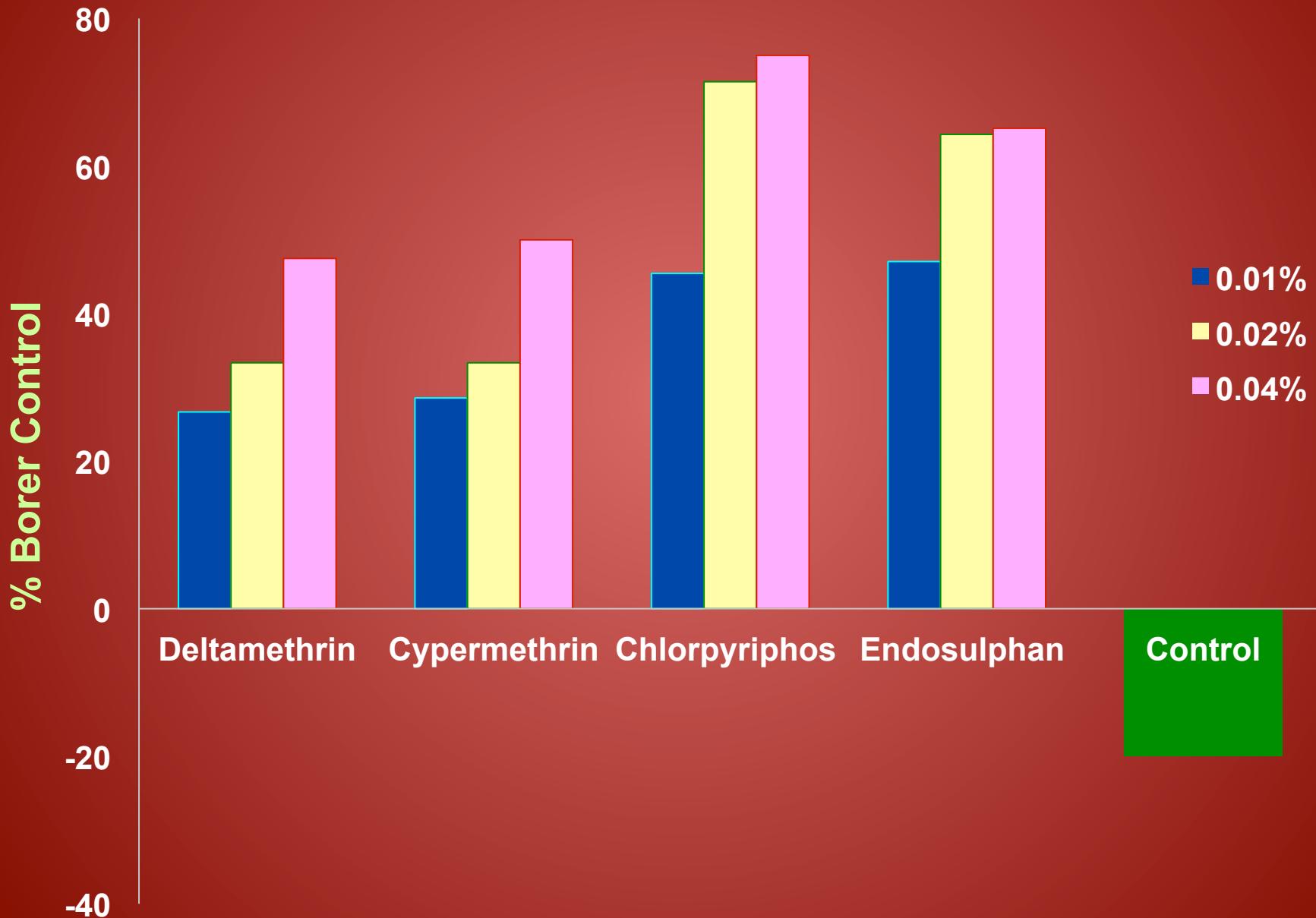

Concentrations : 0.01%, 0.02% and 0.04%

CHEMICAL CONTROL : SYSTEMIC INSECTICIDES

Insecticides	% of Dosages	Treatment	Mean No. of culms	Pre treatment observation (Mean)		Post treatment observation (Mean)		Average % borer Control
				No. of attacked culms	Initial % of attack	No. of attacked culms	Remained % of attack	
Dimethoate 30 EC	0.01	T1	41.00	8.00	19.51	5.67	13.82	29.17 ^a ± 8.13
	0.02	T2	27.00	5.00	18.52	3.33	12.35	33.33 ^a ± 7.51
	0.04	T3	40.67	7.00	17.12	4.33	10.66	38.10 ^a ± 4.76
Monocrotophos 36 EC	0.01	T4	25.00	4.67	18.67	3.00	12.00	35.71 ^a ± 8.66
	0.02	T5	42.33	7.33	17.32	4.67	11.02	36.36 ^a ± 3.36
	0.04	T6	37.00	8.00	21.62	4.67	12.61	41.67 ^{ab} ± 2.58
Imidachloprid 17.8 SL	0.01	T7	34.00	7.67	22.55	4.33	12.75	43.48 ^{ab} ± 0.79
	0.02	T8	42.67	7.67	17.97	3.67	8.50	52.17 ^{bc} ± 11.56
	0.04	T9	44.67	6.67	14.93	2.33	5.22	65.00 ^c ± 3.88
Control	-	T10	55.33	10.67	19.28	12.33	22.29	15.63 ^{d*} ± 13.22

Same alphabets represent statistically at par group; *Borer attack was increased in control treatment

IMPACT OF SYSTEMIC INSECTICIDES



CHEMICAL CONTROL : CONTACT INSECTICIDES

Insecticides	% of Dosages	Treatment	Mean No. of culms	Pre treatment observation (Mean)		Post treatment observation (Mean)		Average % borer Control
				No. of attacked culms	Initial % of attack	No. of attacked culms	Remained % of attack	
Deltamethrin 2.5 EC	0.01	T1	25.67	5.00	19.48	3.67	14.29	26.67 ^a ±4.81
	0.02	T2	28.00	6.00	21.43	4.00	14.29	33.33 ^a ± 7.51
	0.04	T3	26.00	5.67	21.79	3.00	11.54	47.48 ^a ± 9.62
Cypermethrin 25 EC	0.01	T4	25.00	4.67	18.67	3.33	13.33	28.57 ^a ± 7.69
	0.02	T5	23.00	4.00	17.39	2.67	11.59	33.33 ^a ± 0.03
	0.04	T6	24.67	4.67	18.92	2.33	9.46	50.00 ^a ± 11.56
Chlorpyriphos 50 EC	0.01	T7	24.33	3.67	15.07	2.00	8.22	45.45 ^a ± 17.65
	0.02	T8	31.67	4.67	14.74	1.33	4.21	71.43 ^b ± 3.86
	0.04	T9	24.33	4.00	16.44	1.00	4.11	75.00 ^b ± 2.75
Endosulphan 35 EC	0.01	T10	38.00	5.67	14.91	3.00	7.89	47.06 ^a ± 9.64
	0.02	T11	28.33	4.67	16.47	1.67	5.88	64.29 ^b ± 12.71
	0.04	T12	42.00	6.67	15.88	2.33	5.54	65.12 ^b ± 4.81
Control	-	T10	32.33	5.00	16.46	6.00	18.56	20.00 ^{*c} ±17.35

Same alphabets represent statistically at par group; *Borer attack was increased in control treatment

IMPACT OF CONTACT INSECTICIDES

RESULTS

- Post treatment observations showed that the contact insecticides are performing better than systemic insecticides
- Chlorpyriphos (0.02 and 0.04%) provided significantly effective damage control of 71.43 and 75.00%, respectively
- Endosulphan (0.02 and 0.04%) yielded 64.29 and 65.12% damage control
- Imidacloprid (0.02 and 0.04%) effected 52.17 and 65.00% damage control
- Monocrotophos, Deltamethrin, Dimethoate and Cypermethrin were found comparatively less effective for the control of borer

CONCLUSION

- *P. crassicornis* is a serious pest of green standing bamboo
- As many as 10 bamboo species were found to be attacked for the first time
- Larvae feed on woody tissues at nodes and internodes
- Maximum intensity of attack was found in *Bambusa wamin* (44.27%)
- Minimum intensity of attack was found on *Gigantochloa atroviolacea* (1.07 %)
- Contact insecticides performed better as compared to systemic insecticides
- Insecticides should be applied judiciously
- Chlorpyriphos (0.04 %) was found to be the most effective insecticide

Thank you

Let plants and bamboos live forever !

Forest Research Institute, Dehradun, India

