

A new natural reinforcement for polymer composite materials: Long Bamboo fibres

<u>Aart W. van Vuure</u>, Lina Osorio, Eduardo Trujillo, Carlos Fuentes, Jan Ivens, Ignaas Verpoest

Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven

First; what do we call polymer composite materials?

Environmental reasons:

- Renewable resources
- Thermally recyclable, optionally biodegradable, CO₂ neutral
- Natural fibres: Low energy consumption (low CO₂)

So: low "Carbon footprint"

Composite Materials group

World Bamboo Congress, April 2012

Natural Fibres and Bio-polymers: why?

- Cost: often (potentially) low cost (not silk)
- Less abrasive
- Good specific mechanical properties (low density)
- Potential bio-compatibility for e.g. bio-medical applications
- Natural image, design aspects
- Others, like good acoustic & vibration damping, radar transparency, low CTE

Good vibrational damping: Flax/Carbon hybrid bicycle frame

Applications of bio-based composites; on the market

Wood Polymer Composites (WPC's) e.g. deckings

Museeuw/Lineo Flax-Carbon hybrid bike(JEC 2007); Prepreg technology

Mixed NF – PP Car interiors

Decathlon Artengo 820 Flax/Carbon Fibre racket (prepreg Lineo)

Applications of bio-based composites; prototypes

Toyota 1/X concept car (420 kg!):

- Carbon Fibre frame
- Roof of kenaf/ramie fibre composite
 - heat and sound insulation
 - lightweight

Motive Kestrel electric vehicle •Launch 2012 in Canada? •Bio-based composite body

Prototype flax/PP (TU Delft)

NPSP front-end trainflax-UP composite

- vacuum injection
- ~500 kg lighter than steel construction!

Natural Fibres, Quantities

Estimated annual production, in millions of tons:

Wood	1750	
Steel	1000	
Plastics/polymers	200	
Composites (polymer)	5-10	mainly glass fibre composites
Glass fibre	2-4	(at 42% in composites)
Carbon fibre	0.050	(= 50,000 tons)
Synthetic fibres	30	
Natural fibres	27	(large part cotton)
Flax fibres	~ 1.0	
WPC	1.2	
Plant fibre in composites	0.040	in automotive applications Europe

Natural Fibres

World Bamboo Congress, April 2012

1) Fibre properties:

- * Understanding structure (morphology) mechanical property relationships
- * Fibre off-axis properties: low transverse and shear properties
 - ** Improve internal interface between elementary fibres
- * Moisture sensitivity: Make fibres more hydrophobic? / seal them off (interface)

2) (Fibre) Processing

• Extraction, yarn processing, preforming and prepregging

3) Fibre-matrix Interface:

Improving wetting and adhesion (surface energy matching)

4) Environmentally friendly matrices:

* Biodegradable or Bio-based

Bio-based Composites; Natural fibre properties; examples

Silk Composites have excellent falling weight impact performance!

Patent: WO 2007-110758 (with Hermès)

Matrices

Classification of matrices:

* Thermoplastic (TP) and thermoset resins (TS)

Examples of polymers	Natural polymers: (renewable)	BIO-BASED polymers (<i>renewable</i> feedstock, synthesized!):	"Synthetic" petroleum based polymers
Biodegradable	Lignin	PLA PHA, PHB Starch	PBS PCL PVA
Non-biodegradable	Cashew nut shell resin (CSNL)	Furan resin Vegetable oil -PUR (polyol) AESO Ethanol based PE Some nylons (PA-11)	Most well-known polymers: * PP, PE, nylons, etc. * Epoxy, UP

 Research on renewable matrices is relatively recent, especially for bio-thermosets

Bio-based Composites; Developing environmentally friendly matrices

Development of renewable gluten based bio-polymers:

- Improvement of toughness & rheology
- Patent on thiol-based modifiers (WO 2004/029135)
- So far 50% improvement in strength and strain to failure (approaching epoxy)

Fibre processing research; Effect of twist on FLAX UD-composite stiffness (CELC)

oup

Research in cooperation with CELC

Bio-based Composites; Paper honeycomb panels

Applications of 'Torhex' cardboard honeycombs; sandwich panels with NF composite skins

Large Projects at SLC -BioComposites

•Cornet Nature Wins (with Centexbel and ITA Aachen)

Thermoplastic bio-composites, flax/hemp + PLA

- Mixed yarns & textiles / non-wovens
- Consolidation and thermoforming

•TIS Change2Bio (with VKC and Centexbel)

"Renewable polymers – important element to develop the bio-economy"

Bamboo Fibre Composites

- Bamboo fibres have excellent mechanical properties
- Specific properties comparable to glass fibre
- Bamboo can grow to 20 m in 6 months
- Can fix 50-60 tons of C/ha.year
- Challenge is to extract technical fibres

Culm with vascular **bundles**

18

Bamboo Fibre processing

Bamboo Fibre Extraction

Bamboo Fibre properties

E-modulus as f(1/test length), Single bamboo fibre testing

New developments: * use of Digital Image Correlation (camera extensometer)

* Fibre bundle tests (dry + impregnated)

* Study of off-axis properties

World Bamboo Congress, April 2012

Bamboo Fibre morphology (Lina Osorio)

Bamboo Fibre morphology

Most elementary fibres seem to have a simple 2 layer structure

Primary layer with 90° orientation; from fracture surface

Secondary layer with 0° orientation; After etching away primary layer

Next: Measurement of off-axis properties (tests on composites)

World Bamboo Congress, April 2012

Bamboo fibre process development

(Eduardo Trujillo)

Problem statement

UD prepreg with discontinuous fibres; continuous process?

Understanding and improving the fibre-matrix interface; a combined physical-chemical-mechanical approach (Carlos Fuentes)

Bamboo fibre surface analysis

XPS results; courtesy C. DuPont, UCL

Extracted bamboo fibre surface seems to be covered with lignin

Interface studies; Bamboo fibre composites

Results of Surface Energy Component matching; Effect of Physical Adhesion in thermoplastic composites

Bamboo fibre UD composites

Matrix: PP and PVDF (+ some treatments)

World Bamboo Congress, April 2012

Addition of chemical adhesion

Work of Adhesion versus Interface strength for coir composites

Bio-based Composites; Fibre properties

Build

Flax fibre property improvement

- * Fibre Treatment to Reduce Direct and Indirect Moisture Uptake
- * Fibre Treatment to Improve internal fibre strength

Bamboo Fibre Composite performance

COMPOSITE longitudinal flexural tests

Efficiency factor = measured property / theoretical property based on fibre properties

Force

Moisture resistance Bamboo fibres

Fibre moisture uptake,

Absorption isotherm

Environmental relative humidity (%)

100

Moisture uptake is intermediate to literature data for (solid) lignin and cellulose

	Diffusion coefficient [m ² /sec]	
Bamboo	1.04 x 10 ⁻¹⁰	
Flax	1.25 x 10 ⁻⁸	

Moisture effects on Bamboo fibres

Thermal degradation Bamboo fibre composites

Concluding (Bamboo Fibre Composites)

- A promising fibre <u>extraction</u> process was developed for Bamboo Fibres
- Next processing development is cleaning, stretching, aligning and prepregging
- Most elementary fibres have predominantly 0 degree <u>nanofibril orientation</u>, combined with an outer wrap of 90 degrees
- Extracted bamboo fibre seems covered by lignin
- Surface energy component matching allows improving <u>physical adhesion</u>; so far good results with PVDF
- There is a clear correlation between interface strength and UD longitudinal strength
- <u>Efficiency factors</u> for epoxy reach 95% for modulus and 80% for strength
- Moisture uptake is as expected intermediate to solid cellulose and lignin
- Fibre strength and modulus are hardly affected by <u>moisture</u>; strain to failure is affected (plasticisation)

Thanks for your attention!

JEC 2012 Tradeshow in Paris: KU Leuven - SLC booth

The Composite Materials Group of the Department of Metallurgy and Materials Engineering (MTM) of the Katholieke Universiteit Leuven (Belgium) cordially invites you to the

CompositesWeek@Leuven 16-20 September 2013

Three one-day symposia on :

nano-engineered composites,
designing with composites
bio-based composites

the **TEXCOMP** 11 conference on textile composites

www.mtm.kuleuven.be/Onderzoek/Composites/Composieten

